

GCE AS/A LEVEL - NEW

2305U10-1

MONDAY, 13 MAY 2019 – AFTERNOON

FURTHER MATHEMATICS – AS unit 1 FURTHER PURE MATHEMATICS A

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a WJEC pink 16-page answer booklet;
- a Formula Booklet:
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

Answers without working may not gain full credit.

Unless the degree of accuracy is stated in the question, answers should be rounded appropriately.

INFORMATION FOR CANDIDATES

The maximum mark for this paper is 70.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

[6]

Reminder: Sufficient working must be shown to demonstrate the mathematical method employed.

- The matrices **A** and **B** are given by $\mathbf{A} = \begin{pmatrix} 3 & 7 \\ -2 & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 5 & 1 \\ 0 & 4 \end{pmatrix}$. The matrix X is such that AX = B. Showing all your working, find the matrix X.
- 2. The position vectors of the points A, B, C, D are given by

$$\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$$
, $\mathbf{b} = 4\mathbf{j} + 5\mathbf{k}$, $\mathbf{c} = 7\mathbf{i} - 3\mathbf{k}$, $\mathbf{d} = -3\mathbf{i} - \mathbf{j} - 5\mathbf{k}$, respectively.

- Find the vector equations of the lines AB and CD. [3] (a)
- (b) Determine whether or not the lines *AB* and *CD* are perpendicular. [4]
- The complex numbers *z* and *w* are represented by the points *Z* and *W* in an Argand diagram. 3. The complex number z is such that |z| = 6 and $\arg z = \frac{\pi}{3}$. The point W is a 90° clockwise rotation, about the origin, of the point Z in the Argand diagram.

(a) Express
$$z$$
 and w in the form $x + iy$. [3]

- (b) Find the complex number $\frac{z}{w}$. [4]
- Prove, by mathematical induction, that $9^n + 15$ is a multiple of 8 for all positive integers n. [7]
- Given that $x = -\frac{1}{2}$ and x = -3 are two roots of the equation

$$2x^4 - x^3 - 15x^2 + 23x + 15 = 0$$
,

find the remaining roots.

[6]

The complex number z is represented by the point P(x, y) in an Argand diagram. Given that

$$|z - 1| = |z - 2i|,$$

show that the locus of *P* is a straight line.

[3]

7. (a) Find an expression for
$$\sum_{r=1}^{2m} (r+2)^2$$
 in the form $\frac{1}{3}m(am^2+bm+c)$, where a,b,c are integers whose values are to be determined. [4]

(b) Hence, calculate
$$\sum_{r=11}^{20} (r+2)^2$$
. [4]

8. The plane \prod contains the three points A(3, 5, 6), B(5, -1, 7) and C(-1, 7, 0).

Find the vector equation of the plane Π in the form $\mathbf{r.n} = d$.

Express this equation in Cartesian form.

[9]

9. The complex numbers z and w are represented by the points P(x, y) and Q(u, v) respectively in Argand diagrams and

$$w = z^2 - 1$$
.

- (a) Show that v = 2xy and obtain an expression for u in terms of x and y. [4]
- (b) The point P moves along the line y = 3x. Find the equation of the locus of Q. [4]
- **10.** The quadratic equation $px^2 + qx + r = 0$ has roots α and β , where p, q, r are non-zero constants.
 - (a) A cubic equation is formed with roots α , β , $\alpha + \beta$.

 Find the cubic equation with coefficients expressed in terms of p, q, r. [6]
 - (b) Another quadratic equation $px^2 qx r = 0$ has roots 2α and γ . Show that $\beta = -2\gamma$.

END OF PAPER